FILTROS DE ARMONICAS

Descripción

Los Filtros de Armónicas de Rechazo Tiristorizado, marca VAR-MEX, de las Series FHR-T (Autosoportado), son especialmente utilizados para compensar cargas reactivas muy dinámicas que cambian su demanda de reactivos de manera muy rápida y que requieren de una compensación ultra rápida que además no provoquen voltajes transitorios. Van desde 50 hasta 800 KVAR en una red eléctrica con un contenido armónico hasta el 30% de THDi y cargas.

Son fabricados en una amplia gama de potencias y en voltajes de 220 y 480 V a 60 Hz. Los Filtros de Armónicas Tiristorizados, son ensamblados con capacitores cilíndricos trifásicos reforzados en voltaje del tipo seco, de tecnología europea, lo que lo hace un equipo bastante compacto, y al mismo tiempo robusto. Además, cuenta con 3 niveles de protección interna (autorregeneración, fusible interno, tapa de sobrepresión), que lo convierte en el más seguro del mercado. El reactor está conectado en serie con el capacitor para formar un filtro sintonizado a 228 Hz y evitar la resonancia con corrientes armónicas 5^a y 7^a.

Características

Características eléctricas de los Capacitores

➤ Voltajes: 400 V / 690 V AC

> Frecuencia: 60 Hz

➤Tecnología: Seco Autorregenerable

➤ Expectativa de Vida: 120.000 hrs ➤ Sobrecarga: 1.3 IN

> Sobretensión: 10 %, 8 sobre 24 horas

15 %, hasta 15 min. al día

20 %, hasta 5 min. al día 30 %, hasta 1 min. Al día

Nivel de aislamiento: < 690 V: 3,000 V AC, 10 s

> Tolerancia de potencia: -5 + 15 %

> Resistencia de descarga: 75 V / 3minutos ▶ Pérdidas: Dieléctricas: < 0.2 W / KVAr

Totales: < 0.5 W / KVAr

> Protecciones: Regeneración dieléctrica

Fusible interno

Sistema de sobre presión

Características eléctricas de los Reactores

➤ Voltajes: 400 V / 690 V AC

> Frecuencia: 60 Hz

➤ Material: Cobre de alta cond.

➤Tolerancia de la inductancia: +-5% ➤ Linealidad I lin: 1.6...2 IN

Sobretensión: 10 %, 8 sobre 24 horas

> 15 %, hasta 15 min. al día 20 %, hasta 5 min. al día

30 %, hasta 1 min. Al día

Switch integrado

➤ Nivel de aislamiento: 3KV 40°C

> Temperatura Ambiente Max:

> Protector térmico:

➤ Diseño: Trifasico con laminado de acero ventilado

Equipamiento de Serie

> Controlador de Pasos con microprocesador, con display indicador de FP (solo en versión automático)

➤ Contactores especiales para capacitores

>Interruptor Termomagnético con palanca de seguridad externa (35 KA @ 480V)

>Fusibles de protección para cada contactor

➤Transformador de control

➤Extractor de aire

Características Mecánicas

Acero Calibre 14 > Envolvente:

➤ Color: Beige

> Grado de Protección: NEMA 1 (IP50)

Condiciones Ambientales

➤ Temperatura Clase D: Máxima 55 °C

> Mínima -25 °C Medida diaria 40 °C Media anual 30 °C

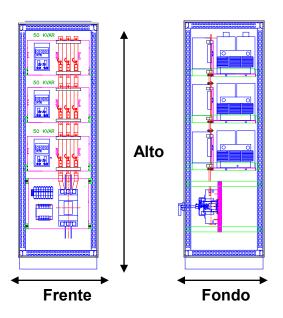
➤ Humedad: 95 %

➤ Altitud: 2,000 m

Condiciones de Instalación

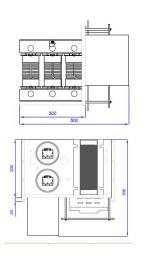
➤Tipo de Montaje: Vertical/Autosoportado

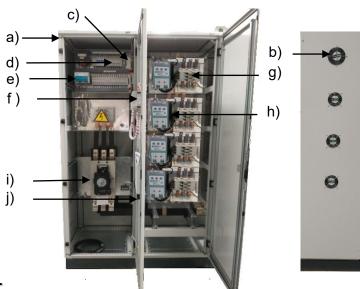
➤Ventilación: Forzada > 30°C ➤Sistema: 3 Fases + G


Normas de Fabricación

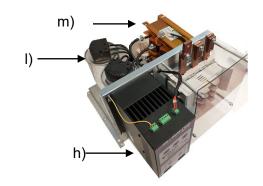
➤ Capacitores: IEC 60831-1/2

www.varmex.com.mx


CAPACIDADES Y DIMENSIONES



MODELO	KVAR / PASOS	VOLTAJE	ARMONICA SINTONIA %P	DIMENSIONES (mm) Alto x Frente x Fondo
FHR220-50/3/60	50 / 2	230	14	1600 X 600 X 600
FHR220-100/3/60	100 / 4	230	14	1600 X 1200 X 600
FHR220-125/3/60	125 / 5	230	14	1600 X 1200 X 600
FHR220-150/3/60	150 / 6	230	14	2000 X 1200 X 600
FHR220-200/3/60	200 / 8	230	14	1600 X 1800 X 600
FHR220-250/3/60	250 / 10	230	14	2000 X 1800 X 600
FHR220-300/3/60	300 / 12	230	14	2000 X 2400 X 600

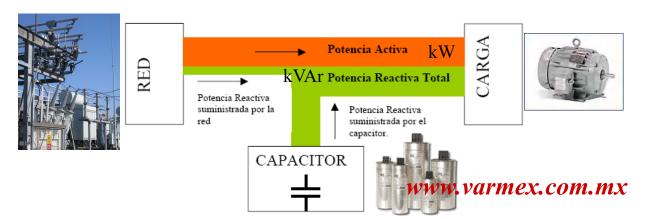

MODELO	KVAR / PASOS	VOLTAJE	ARMONICA SINTONIA %p	DIMENSIONES (mm) Alto x Frente x Fondo
FHR480-50/3/60	50 / 2	480	7	1600 X 600 X 600
FHR480-100/3/60	100 / 2	480	7	1600 X 600 X 600
FHR480-150/3/60	150 / 3	480	7	2000 X 600 X 600
FHR480-200/3/60	200 / 4	480	7	1600 X 1200 X 600
FHR480-250/3/60	250 / 5	480	7	1600 X 1200 X 600
FHR480-300/3/60	300 / 6	480	7	2000 X 1200 X 600
FHR480-350/3/60	350 / 7	480	7	2000 X 1200 X 600
FHR480-400/3/60	400 / 8	480	7	1600 X 1800 X 600
FHR480-450/3/60	450 / 9	480	7	2000 X 1800 X 600
FHR480-500/3/60	500 / 10	480	7	2000 X 1800 X 600
FHR480-550/3/60	550/11	480	7	2000 X 1800 X 600
FHR480-600/3/60	600 / 12	480	7	2000 X 2400 X 600

Partes y Componentes del FHR-T

- a) Gabinete Metálico tipo Pedestal
- b) Extractor de calor.
- c) Termostato ajustable
- d) Fusibles de Control
- e) Transformador de Control
- f) Controlador Electrónico de Pasos
- g) Fusibles de Potencia de Pasos
- h) Contactor Tiristorizado
- i) Interruptor Termomagnético Principal
- j) Seccionador externo de seguridad
- k) Rejillas de Ventilación
- I) Capacitores Secos Autorregenerables
- m) Reactor desintonizado para corrientes armónicas

INFORMACION TECNICA

COMO SE CALCULAN LOS KVAr

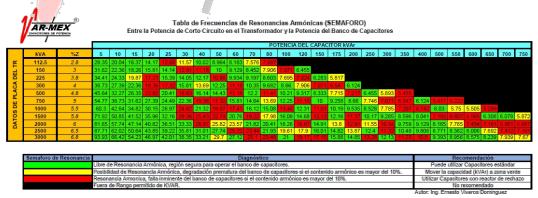


Procedimiento de Cálculo:

- 1. Localice en la Tabla 1 el Factor de Potencia Existente de la carga (1er. Columna).
- 2. Localice en la Tabla 1 el Factor de Potencia Deseado a corregir (1er. Renglón).
- 3. Obtenga el Factor de conversión de la Tabla 1 donde se interceptan ambos Factores de Potencia escogidos (Existente y Deseado).
- 4. Este factor se debe multiplicar por la Potencia Activa (kW) de la carga.
- 5. El resultado obtenido es la Potencia Reactiva (kVAr) del banco de capacitores para llevar el Factor de Potencia Existente al Factor de Potencia Deseado.

TABLA 1. Factores de conversión de kVAr

Factor de potencia existente: cosφ Factor de potencia deseado: **cos**φ_c · 0.85 0.86 0.87 0.88 0.89 0.90 0.94 1.00 0.427 0.453 0.480 0.508 0.536 0.5650.5940.625 0.657 0.692 0.729 0.770 0.817 1.020 0.70 0.400 0.597 0.372 0.398 0.425 0.452 0.480 0.508 0.536 0.566 0.629 0.663 0.700 0.992 0.71 0.72 0.344 0.370 0.397 0.424 0.452 0.480 0.508 0.538 0.569 0.601 0.635 0.672 0.713 0.761 0.821 0.964 0.573 0.936 0.73 0.316 0.343 0.370 0.396 0.4240.4520.481 0.510 0.541 809.0 0.686 0.733 0.453 0.483 0.514 0.546 0.909 0.740.342 0.369 0.397 0.580 0.658 0.706 0.766 0.75 0.3150.342 0.370 0.398 | 0.426 | 0.456 | 0.487 | 0.519 0.553 0.590 0.631 0.679 0.882 0.605 0.652 0.713 0.76 0.235 0.262 0.288 0.315 0.343 0.371 0.400 0.429 0.460 0.492 0.526 0.563 0.855 0.77 0.209 0.235 0.262 0.289 0.316 0.344 0.373 0.403 0.433 0.466 0.500 0.537 0.578 0.626 0.829 0.78 0.183 0.209 0.236 0.263 0.290 0.348 0.347 0.376 0.407 0.439 0.552 0.599 0.660 0.802 0.79 0.156 0.183 0.209 0.236 0.2640.292 0.320 0.350 0.381 0.4130.4470.4840.525 0.573 0.634 0.776 0.80 0.130 0.157 0.183 0/210 0.266 0.324 0.355 0.387 0.421 0.458 0.499 0.547 0.608 0.750 0.81 0.157 0.184 0.212 0.240 0.268 0.298 0.329 0.361 0.395 0.432 0.473 0.521 0.581 0.724 0.82 0.078 0.105 0.131 /0.158 0.186 0.214 0.242 0.272 0.303 0.335 0.369 0.406 0.447 0.495 0.556 0.698 0.277 0.309 0.83 0.052 0.079 0.105 0.132 0.160 0.188 0.216 0.246 0.343 0.380 0.421 0.469 0.530 0.672 0.026 0.053 0.079 0.106 0.134 0.162 0.190 0.220 0.251 0.283 0.84 0.317 0.354 0.395 0.443 0.503 0.646 0.85 0.000 0.026 0.053 0.080 0.107 0.135 0.164 0.194 0.225 0.257 0.291 0.328 0.369 0.417 0.477 0.620 #### 0.027 0.054 0.081 0.230 0.593 0.86 0.000 0.109 0.138 0.167 0.198 0.265 0.302 0.343 0.390 0.451 0.238 0.87 **** 0.000 0.0270.054 0.082 0.111 0.141 0.172 0.204 0.275 0.316 0.364 0.424 0.567 0.88 #### 0.000 0.027 0.0550.084 0.114 0.145 0.177 0.211 0.248 0.289 0.337 0.397 0.540 0.89 HH HH #### #### #### 0.000 0.028 0.057 0.086 0.117 0.149 0.184 0.221 0.262 0.309 0.370 0.512 0.90 #### #### #### #### 0.000 0.029 0.058 0.089 0.121 0.156 0.193 0.234 0.281


Evitando la Resonancia Armónica

- 1. Antes de Seleccionar e instalar un banco de capacitores, se deberá hacer un análisis resonancia de la Red Eléctrica donde se conectará el equipo. Esto con el objetivo de evitar una amplificación de corriente en el capacitor y una sobretensión en la Red Eléctrica debido a la existencia de corrientes armónicas producidas por los equipos electrónicos de las cargas. A continuación se presenta una procedimiento sencillo para realizar este análisis.
- a) Obtener los valores de KVA-tr y el %Z de impedancia de placa de datos del transformador que alimenta a la carga y donde se tiene planeado instalar los capacitores.
- b) Calcular los kVAr-cap del capacitor de acuerdo a la Tabla 1.
- c) Calcular la frecuencia de resonancia armónica con la siguiente fórmula:

$$fr = \sqrt{\frac{KVAtr \times 100}{KVARcap \times \%Z}}$$

Si el resultado es muy cercano a los siguientes números 3, 5, 7, 11,13, 17 o 19, se deberá intentar cambiar la capacidad del banco de capacitores seleccionado a otro de menor capacidad y repetir el cálculo anterior. Si se cuenta con un analizador de armónicas, recomendamos hacer una medición para descartar que el contenido armónico %THDi sea superior al 10% o %THDv sea superior al 2%. En caso de tener valores superiores a éstos, recomendamos la instalación de Filtros de Armónicas de Rechazo para corregir el Factor de Potencia.

A continuación se muestra el método del "Semáforo de Resonancia" que le ofrecemos como herramienta de visualización rápida de la posibilidad de entrar o caer en una frecuencia de Resonancia Armónica por la combinación de Capacitores y el Transformador del Sistema.

- Se debe evitar instalar los bancos de capacitores fijos con el transformador en vacío, cuando la capacidad del banco sea mayor del 10% de la capacidad del transformador. Esta medida es para evitar que exista una sobre elevación del voltaje de la red eléctrica por encima del 5% del voltaje nominal.
- 3. Nunca se deben instalar los bancos de capacitores en el mismo punto o cerca del mismo alimentador donde este conectado un Drive de AC o DC de un motor. Este mismo caso aplica a rectificadoras o maquinas de soldar y hornos de inducción.

Distribuidor Autorizado:

Teléfono de Fábrica: 01- (81) 83-52-53-60